Isegoría, No 55 (2016)

La biología sintética como desafío para comprender la autonomía de lo vivo


https://doi.org/10.3989/isegoria.2016.055.08

Sara Murillo-Sánchez
Universidad del País Vasco (UPV/EHU), España

Kepa Ruiz-Mirazo
Universidad del País Vasco (UPV/EHU), España

Resumen


En este artículo se ofrece una visión de la biología sintética alternativa a los planteamientos ingenieriles que marcan gran parte de la agenda de investigación del campo. Nuestro análisis se centra en enfoques, teóricos y experimentales, cuyo objetivo fundamental es la comprensión del fenómeno de la vida per se. Una revisión detallada de varios casos de implementación artificial, in vitro, de sistemas químicos ‘auto-productivos’ nos ayudará a reflexionar sobre el enorme reto que supone transformar una disciplina científica eminentemente descriptiva, como la biología, en un proyecto que incluya y potencie líneas de investigación basadas en la idea de síntesis o fabricación. El reto es mayúsculo debido al carácter intrínsecamente metabólico de los sistemas biológicos, lo cual hace que nuestro empeño en controlarlos o en construirlos de novo sea mucho más dificultoso, forzándonos a desarrollar plataformas de intervención/implementación a nivel molecular que no pongan en compromiso esa inherente dimensión autónoma de lo vivo.

Palabras clave


auto-organización; autocatálisis; metabolismo; célula mínima; autonomía biológica; origen de vida; fabricación

Texto completo:


PDF

Referencias


Adrianantoandro, E., Basu, S., Karig, D.K., Weiss, R., "Synthetic biology: new engineering rules for an emerging discipline", Mol. Syst. Biol. 2006, 2.

Annaluru, N. et al., "Total synthesis of a functional designer eukaryotic chromosome", 2014, Science, 344, pp. 55-58. https://doi.org/10.1126/science.1249252 PMid:24674868 PMCid:PMC4033833

Ashkenasy, G., Jagasia, R., Yadav, M., Ghadiri, M.R., "Design of a directed molecular network", 2004, PnAs, 101, pp. 10872-10877. https://doi.org/10.1073/pnas.0402674101 PMid:15256596 PMCid:PMC503713

Bachmann, P. A., Luisi, P.L. & Lang, J., "Autocatalytic self-replicating micelles as models for prebiotic structures", 1992, Nature 357, pp. 57-59. https://doi.org/10.1038/357057a0

Benner, S.A., Sismour, A.M., "Synthetic biology", 2005, Nat Rev Genet, 6, pp. 533–543. https://doi.org/10.1038/nrg1637 PMid:15995697

Bishop, R.C., "Fluid convection, constraint and causation", Interface Focus, 2012, 2, pp. 4-12. https://doi.org/10.1098/rsfs.2011.0065 PMid:23386955 PMCid:PMC3262306

Bissette, A.J. & Fletcher, S.P., "Mechanisms of autocatalysis", 2013, Angew. Chem, Int. ed, 52, pp. 12800–12826. https://doi.org/10.1002/anie.201303822 PMid:24127341

Bissette, A.J., Odell, B., Fletcher, S.P., "Physical autocatalysis driven by a bond-forming thiol-ene reaction", 2014, Nature Communications, 5, pp. 4607. https://doi.org/10.1038/ncomms5607 PMid:25178358

Cameron, D.E., Bashor, C.J., Collins, J.J., "A brief history of synthetic biology", 2014, Nature Reviews Microbiology, 12, pp. 381-390. https://doi.org/10.1038/nrmicro3239 PMid:24686414

Canton, B., Labno, A. & Endy, D., "Refinement and standardization of synthetic biological parts and devices", 2008, Nature Biotech., 26, pp. 787–793. https://doi.org/10.1038/nbt1413 PMid:18612302

Dadon, Z., Wagner, N., Ashkenasy, G., "The Road to Non-Enzymatic Molecular Networks", 2008, Angew. Chem. Int. Ed., 47, pp. 6128-6136. https://doi.org/10.1002/anie.200702552 PMid:18613152

De la Escosura, A., Briones, C. & Ruiz-Mirazo, K., "The systems perspective at the crossroads between chemistry and biology", 2015, Journal of Theoretical Biology, 381, pp. 11-22. https://doi.org/10.1016/j.jtbi.2015.04.036 PMid:25983045

Endy, D., "Foundations for engineering biology", 2005, Nature, 438, pp. 449–453. https://doi.org/10.1038/nature04342 PMid:16306983

Epstein, I.R., "Coupled Chemical Oscillators and Emergent System Properties", 2014, Chem. Commun., 50, pp. 10758-10767. https://doi.org/10.1039/C4CC00290C PMid:24835430

Fontana, W. & Buss, L.W., "The arrival of the fittest: Toward a theory of biological organization", 1994, Bull. Math. Biol, 56, pp. 1-64.

Fry, I., "The emergence of life on Earth: A historical and scientific overview", 2000, Rutgers Univ. Press, London.

Ganti, T., "The Principle of Life", 1987, omIKK, Budapest.

Ganti, T., "On the early evolutionary origin of biological periodicity", 2002, Cell Biol. Int., 26, pp. 729–735. https://doi.org/10.1006/cbir.2000.0668 PMid:12175676

Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R-Y et al., "Creation of a bacterial cell controlled by a chemically synthesized genome", 2010, Science, 329, pp. 52–56. https://doi.org/10.1126/science.1190719 PMid:20488990

Hardy, M. D., Yang, J., Selimkhanov, J., Cole, C. M., Tsimring, L. S., Devara, N. K., "Selfreproducing catalyst drives repeated phospholipid synthesis and membrane growth", 2015, PnAs, 112, pp. 8187-8192. https://doi.org/10.1073/pnas.1506704112 PMid:26100914 PMCid:PMC4500204

Harold, F., "The way of the cell", 2001, Oxford University Press, Oxford.

Hordijk, W., & Steel, M., "Detecting autocatalytic, self-sustaining sets in chemical reaction systems", 2004, J Theor Biol, 227(4), pp. 451–461. https://doi.org/10.1016/j.jtbi.2003.11.020 PMid:15038982

Hutchison, C.A. et al., "Design and synthesis of a minimal bacterial genome", 2016, Science, 351, aad6253. https://doi.org/10.1126/science.aad6253 PMid:27013737

Ichihashi, N., Aita, T., Motooka, D., Nakamura, S., Yomo, T., "Periodic pattern of genetic and fitness diversity during evolution of an artificial cell-like system", 2015, Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msv189 PMid:26342111

Issac, R., Chmielewski, J., "Approaching Exponential Growth with a Self Replicating Peptide", 2002, J. Am. Chem. Soc, 124, pp. 6808-6809. https://doi.org/10.1021/ja026024i PMid:12059185

Jonas, H., "The phenomenon of life. Toward a philosophical biology", 1966 (2000), Harper and Row, New York. (El principio vida. Hacia una biología filosófica. Editorial Trotta).

Joyce, G., "The antiquity of RNA-based evolution", Nature, 2002, 418, pp. 214–221. https://doi.org/10.1038/418214a PMid:12110897

Kauffman, S., "Autocatalytic Sets of Proteins", 1986, Journal of Theoretical Biology, 119, pp. 1-24. https://doi.org/10.1016/S0022-5193(86)80047-9

Kauffman, S., "Investigations", 2000, Oxford University Press, Oxford.

Keasling, J. D., "Synthetic biology for synthetic chemistry", 2008, ACs Chem. Biol., 3(1), pp. 64-76. https://doi.org/10.1021/cb7002434 PMid:18205292

Kiedrowski, G. von, "A self-replicating hexadeoxy nucleotide", 1986, Angew. Chem. Int. Ed. Engl, 25, pp. 932-935. https://doi.org/10.1002/anie.198609322

Kiedrowski,G. von, "Public Communication in Systems Chemistry Workshop", 2005, Venice International University, pp. 3–4.

King, G.A.M., "Recycling, reproduction and life's origins", 1982, Biosystems, 15, pp. 89– 97. https://doi.org/10.1016/0303-2647(82)90022-3

Kittleson, J.T., Wu, G.C., Anderson, J.C., "Successes and failures in modular genetic engineering", 2012, Current Opinion in Chemical Biology, 16, pp. 329-336. https://doi.org/10.1016/j.cbpa.2012.06.009 PMid:22818777

Kurihara, K. et al., "Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA", 2011, Nat. Chem., 3, pp. 775–781. https://doi.org/10.1038/nchem.1127 PMid:21941249

Kurihara, K. et al. (2015). A recursive, vesicle-based model protocell with a primitive model cell cycle. Nature Communications 6, pp. 8352. https://doi.org/10.1038/ncomms9352 PMid:26418735 PMCid:PMC4598553

Kwok, R., "Five hard truths for synthetic biology", 2010, Nature, 463, pp. 288-290. https://doi.org/10.1038/463288a PMid:20090726

Langton, C.G., "Artificial Life", 1989, Artificial Life I (Proceedings of the First Conference on Artificial Life, Los Alamos, september, 1987), pp. 1-47. PMid:2786419

Lee, D.H., Granja, J.R., Martínez, J.A., Severin, K. & Ghadiri, M.R., "A self-replicating peptide", 1996, Nature, 382, pp. 525-528. https://doi.org/10.1038/382525a0 PMid:8700225

Letelier, J. C., Marín, G., Mpodozis, J., "Autopoietic and (M,R) Systems", 2003, Journal of Theoretical Biology, 222(2), pp. 261-72. https://doi.org/10.1016/S0022-5193(03)00034-1

Ludlow, R.F., Otto,S., "Systems chemistry", 2008, Chem. Soc. Rev., 37, pp. 101–108. https://doi.org/10.1039/B611921M PMid:18197336

Maturana, H. & Varela, F.J., "De Máquinas y Seres Vivos: Una teoría sobre la organización biológica", 1973, Editorial Universitaria S.A., Santiago de Chile.

Mavelli, F. & Ruiz-Mirazo, K., "Theoretical conditions for the stationary reproduction of model protocells", 2013, Integrative Biology, 5, pp. 324-341. https://doi.org/10.1039/C2IB20222K PMid:23233152

Moreno, A. & Ruiz-Mirazo, K., "Metabolism and the problem of its universalization", 1999, Biosystems, 49(1), pp. 45-61. https://doi.org/10.1016/S0303-2647(98)00034-3

Morowitz, H.J., "Energy flow in Biology", 1968, Academic Press, New York.

Morowitz, H.J., "Beginnings of Cellular Life", 1992, Yale University Press, Binghamton, New York.

Mossio, M., Saborido, C., Moreno, A., "An organisational account of biological functions", 2009, Brit J Philo Sci., 60, pp. 813–841. https://doi.org/10.1093/bjps/axp036

Nicolis, G., "Physics of far-from-equilibrium systems and self-organisation", 1989, The New Physics, Cambridge Univ. Press, Cambridge, pp. 316-347.

Orgel, L.E., "Prebiotic chemistry and the origin of the RNA world", 2004, Crit. Rev. Biochem. Mol. Biol., 39, pp. 99–123. https://doi.org/10.1080/10409230490460765 PMid:15217990

Patel, B.H., Percivalle, C., Ritson, D.J., Duffy, C.D. & Sutherland, J. D., "Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism", 2015, Nature Chemistry, 7, pp. 301-307. https://doi.org/10.1038/nchem.2202 PMid:25803468 PMCid:PMC4568310

Piedrafita, G., Ruiz-Mirazo, K., Monnard, P.-A., Cornish-Bowden, A. & Montero, F., "Viability conditions for a compartmentalized proto-metabolic system: a semi-empirical approach", 2012, PLos One, 7(6), e39480. https://doi.org/10.1371/journal.pone.0039480 PMid:22761803 PMCid:PMC3384665

Pinheiro, V.B., Holliger, P., "The XNA world: progress towards replication and evolution of synthetic genetic polymers", 2012, Current Opinion in Chemical Biology, 16 (3), pp. 245-252. https://doi.org/10.1016/j.cbpa.2012.05.198 PMid:22704981

Purnick, P.E. & Weiss, R., "The second wave of synthetic biology: from modules to systems", 2009, Nature Rev. Mol. Cell Biol., 10, pp. 410–422. https://doi.org/10.1038/nrm2698 PMid:19461664

Rao, C.V., Wolf, D.N., Arkin, A.P., "Control, exploitation and tolerance of intracellular noise", 2002, Nature, 420, pp. 231–237. https://doi.org/10.1038/nature01258 PMid:12432408

Rosen, R., "Life itself: A comprehensive inquiry into the nature, origin and fabrication of life", 1991, Columbia Univ. Press, New York.

Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B., "Gene regulation at the single-cell level", 2005, Science, 307, pp. 1962–1965. https://doi.org/10.1126/science.1106914 PMid:15790856

Ruiz-Mirazo, K., Briones, C., de la Escosura, A., "Prebiotic systems chemistry: New perspectives for the origins of life", 2014, Chem. Rev., 114, pp. 285–366. https://doi.org/10.1021/cr2004844 PMid:24171674

Ruiz-Mirazo, K. & Mavelli, F., "On the way towards 'basic autonomous agents': stochastic simulations of minimal lipid-peptide cells", 2008, Biosystems, 91(2), pp. 374-387. https://doi.org/10.1016/j.biosystems.2007.05.013 PMid:17714858

Ruiz-Mirazo, K. & Moreno, A., "Basic autonomy as a fundamental step in the synthesis of life", 2004, Artificial Life, 10(3), pp. 235-259. https://doi.org/10.1162/1064546041255584 PMid:15245626

Ruiz-Mirazo, K. & Moreno, A., "Autonomy in evolution: from minimal to complex life", 2012, Synthese, 185 (1), pp. 21-52. https://doi.org/10.1007/s11229-011-9874-z

Ruiz-Mirazo, K., Moreno, A., "Synthetic biology: challenging life in order to grasp, use or extend it", 2013, Biol. Theor., 8, pp. 376–382. https://doi.org/10.1007/s13752-013-0129-8

Schwille, P., "Bottom-up synthetic biology: engineering in a tinkerer's world", 2011, Science, 333(6047), pp. 1252-4. https://doi.org/10.1126/science.1211701 PMid:21885774

Semenov, S. N. et al. "Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions", 2016, Nature, 537, pp. 656-660. https://doi.org/10.1038/nature19776 PMid:27680939

Serrano, L., "Synthetic biology: promises and challenges", 2007, Mol Syst Biol, 3, pp. 158. https://doi.org/10.1038/msb4100202 PMid:18091727 PMCid:PMC2174633

Shirt-Ediss, B., Solé, R.V. & Ruiz-Mirazo, K., "Emergent chemical behavior in variablevolume protocells", 2015, Life, 5(1), pp. 181-211. https://doi.org/10.3390/life5010181 PMid:25590570 PMCid:PMC4390847

Shetty, R.P., Endy, D. & Knight, T.F. Jr., "Engineering BioBrick vectors from BioBrick parts", 2008, J. Biol. Eng., 2, pp. 5. https://doi.org/10.1186/1754-1611-2-5 PMid:18410688 PMCid:PMC2373286

Szathmáry, E., Santos, M., Fernando, C., "Evolutionary potential and requirements for minimal protocells", 2005, Top. Curr. Chem., 259, pp. 167-211. https://doi.org/10.1007/tcc001

Szostak, J.W., "The eightfold path to non-enzymatic RNA replication", 2012, J. Syst. Chem., 3, pp. 2. https://doi.org/10.1186/1759-2208-3-2

Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T.,Yomo, T., "Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules", 2012, PnAs, 109, pp. 5942-5947. https://doi.org/10.1073/pnas.1120327109 PMid:22474340 PMCid:PMC3340996

Turing, A. M., "The chemical basis of morphogenesis", 1952, Philos. Trans. R. Soc. London. Ser. b., 237, pp. 37-72. https://doi.org/10.1098/rstb.1952.0012

Varela, F. J., "Principles of Biological Autonomy", 1979, Elsevier, New York. PMCid:PMC1186669

Vaidya, N., Manapat, M.L., Chen, I.A., Xulvi-Brunet, R., Hayden, E.J., Lehman, N., "Spontaneous network formation among cooperative RNA replicators", 2012 Nature, 491, pp. 72–77. https://doi.org/10.1038/nature11549 PMid:23075853

Varios autores, "Life after the synthetic cell", 2010, Nature.

Vinson, V., Pennisi, E., "The allure of synthetic biology", 2011, Science, 333, pp. 1235. https://doi.org/10.1126/science.333.6047.1235 PMid:21885767

Virgo, N., Ikegami, T., "Autocatalysis before enzymes: the emergence of prebiotic chain reactions", 2013, Proceedings of the twelfth european Conference on Artificial Life, mIt Press, pp. 240-247.

Walde, P., "Building artificial cells and protocell models: Experimental approaches with lipid vesicles", 2010, Bioessays, 32, pp. 296–303. https://doi.org/10.1002/bies.200900141 PMid:20217842

Walde, P., Wick, R., Luisi. P.L., "Autopoietic self-reproduction of fatty acid vesicles" 1994, J. Am. Chem. Soc., 116, pp. 11649–11654. https://doi.org/10.1021/ja00105a004

Wang, H.-S., Wei, K. Y. & Smolke, C.D., "Synthetic biology: advancing the design of diverse genetic systems", 2013, Ann. Rev. Chem. Biomolec. Engineering, 4, pp. 69-102. https://doi.org/10.1146/annurev-chembioeng-061312-103351 PMid:23413816 PMCid:PMC3773533

Yao, S., Ghosh, I., Zutshi, R., Chmielewski, J., "Selective amplification by auto- and crosscatalysis in a replicating peptide system", 1998, Nature, 396, pp. 447-450. https://doi.org/10.1038/24814




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista isegoria.cchs@cchs.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es