Algorithmic fairness and deliberative self-determination
DOI:
https://doi.org/10.3989/isegoria.2023.68.23Keywords:
Fairness, Algorithms, Bias, Deliberative democracyAbstract
If democracy is about enabling all people to have equal opportunities to influence the decisions that affect them, digital societies need to ask how to ensure that new environments make this equality feasible. The first challenges are conceptual: understanding how the interaction between humans and algorithms is configured, what the learning of these devices consists of, and the nature of their biases. Immediately afterwards, we come up against the unavoidable question of what kind of equality, we are trying to ensure, bearing in mind the diversity of conceptions of fairness in our societies. If articulating this pluralism is not a matter that can be resolved with an aggregative technique, but requires political compromises, then a deliberative conception of democracy seems the most apt to achieve the equality to which democratic societies aspire.
Downloads
References
Amoore, Louise (2020), Cloud Ethics. Algorithms and the Attributes of Ourselves and Others, Durham / London: Duke University Press. https://doi.org/10.1215/9781478009276
Arrow, Kenneth J. (1950), "A Difficulty in the Concept of Social Welfare", Journal of Political Economy 58, 328-346. https://doi.org/10.1086/256963
Baumer, Eric y Brubaker, Jed (2017). "Post-userism", en Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, 6291-6303. https://doi.org/10.1145/3025453.3025740
Beck, Ulrich; Lash, Scott y Giddens, Anthony (1994), Reflexive Modernization, Cambridge: Polity Press.
Berk, Richard; Heidari, Hoda; Jabbari, Shahin; Kearns, Michael y Roth, Aaron (2017), "Fairness in Criminal Justice Risk Assessments: The State of the Art", arXiv preprint, arXiv:1703.09207 https://doi.org/10.1177/0049124118782533
Binns, Reuben (2018a), "Fairness in Machine Learning: Lessons from Political Philosophy", Proceedings of Machine Learning Research 81, 149-159.
Binns, Reuben (2018b), "Algorithmic Accountability and Public Reason", Philosophy & Technology 31, 543-556. https://doi.org/10.1007/s13347-017-0263-5 PMid:30873342 PMCid:PMC6390894
Brooks, Frederick P. (1975), The Mythical Man-Month: Essays on Software Engineering, Massachusetts: Addison-Wesley. https://doi.org/10.1145/800027.808439 PMid:124066
Coglianese, Cary y Lai, Alicia (2022), "Algorithm vs. Algorithm", Duke Law Journal, Vol. 72, University of Pennsilvania Law School, Public Law Research Paper No. 22-11, Available at SSRN: https://ssrn.com/abstract=4026207
Collins, Patricia Hill (2002), Black Feminist Thought: Knowledge, Consciousness, and the Politics of Empowerment, New York: Routledge.
Coyle, Diane y Weller, Adrian (2020), "Explaining Machine Learning Reveals Policy Challenges", Science 386 / 6498, 1433-1434. https://doi.org/10.1126/science.aba9647 PMid:32587011
Crenshaw, Kimberlé (ed.) (2019), Seeing Race Again: Countering Colorblindness across the Disciplines, Berkeley: University of California Press. https://doi.org/10.1525/9780520972148
Christian, Brian (2020), The Alignment Problem: Machine Learning and Human Values, New York: Norton & Company.
Dieterich, William; Mendoza, Christina y Brennan, Tim (2016), "COMPAS Risk Scales: Demonstrating Accuracy Equity and Predictive Parity", Northpoint Inc. Available Online at: http://go.volarisgroup.com/rs/430- MBX-989/images/ProPublica_Commentary_Final_070616.pdf
Dwork, Cynthia; Hardt, Moritz; Pitassi, Toniann; Reingold, Omer y Zemel, Richard (2012), "Fairness through awareness", Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, 214-226. https://doi.org/10.1145/2090236.2090255
Friedler, Sorelle; Scheidegger, Carlos y Venkatasubramanian, Suresh (2016), "On the (Im)possibility of Fairness", arXiv preprint, arXiv:1609.07236.
Gal, Michal (2017), "Algorithmic challenges to autonomous choice", Michigan Telecommunications and Thechnology Law Review 25, 59-104. https://doi.org/10.2139/ssrn.2971456
García Marzá, Domingo y Calvo, Patrici (2022), "Democracia algorítmica: ¿un nuevo cambio estructural de la opinión pública?", Isegoría, (67/17). https://doi.org/10.3989/isegoria.2022.67.17
Green, Been y Hu, Lily (2018), "The myth in the methodology: Towards a recontextualization of fairness in machine learning", Machine Learning: The Debates workshop at the 35th International Conference on Machine Learning. https://www.benzevgreen.com/wpcontent/uploads/2019/02/18-icmldebates.pdf
Hanna, Alex; Denton, Emily; Smart, Andrew y Smith-Loud, Jamila (2020), "Towards a critical race methodology in algorithmic fairness", Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3351095.3372826
Hardt, Moritz (2014), "How Big Data Is Unfair: Understanding Unintended Sources of Unfairness in Data Driven Decision Making", Medium, September 26. https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
Innerarity, Daniel (2019), "Democratic equality: an egalitarian defense of political mediation", Constellations. An International Journal of Critical and Democratic Theory, 26/4, 513-524. https://doi.org/10.1111/1467-8675.12402
Innerarity, Daniel (2023), A theory of complex democracy. Governing in the Twenty-first century, London: Bloomsbury.
Jolls, Chistine; Sunstein, Cass R. y Thaler, Richard (1998), "A Behavioral Approach to Law and Economics", Stanford Law Review 50 (5), 1471-550. https://doi.org/10.2307/1229304
Kahneman, Daniel (2011), Thinking, Fast and Slow, New York: Farrar, Straus and Giroux.
Kasy, Maximilian y Abebe, Rediet (2021), "Fairness, equality, and power in algorithmic decision-making", en Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 576-586. https://doi.org/10.1145/3442188.3445919
Lai, Alicia (2018), Brain Bait: Effects of Cognitive Biases on Scientific Evidence in Legal Decision-Making, A.B. thesis, Princeton University.
Martí, José Luis (2021), "New Technologies at the Service of Deliberative Democracy" en Amato, Guiliano; Barbisan, Benedetta y Pinelli, Cesar (eds.), Rule of Law vs Majoritarian Democracy, New York: Bloomsbury, 199-220.
Miconi, Thomas (2017), "The Impossibility of 'Fairness': A Generalized Impossibility Result for Decisions", arXiv preprint, arXiv:1707.01195
Mitchell, Shira; Potash, Eric; Barocas, Solon; D'Amour, Alexander y Lum, Kristian (2021), "Algorithmic fairness: Choices, assumptions, and definitions", Annual Review of Statistics and Its Application, 8, 141-163. https://doi.org/10.1146/annurev-statistics-042720-125902
Mittelstadt, Brent; Allo, Patrick; Taddeo, Mariarosaria; Wachter, Sandra y Floridi, Luciano (2016), "The ethics of algorithms: Mapping the debate", Big Data & Society, 3/2, July-December. https://doi.org/10.1177/2053951716679679
Ochigame, Rodrigo; Barabas, Chelsea; Dinakar, Karthik; Virza, Madars e Ito, Joichi (2018), "Beyond legitimation: Rethinking fairness, interpretability, and accuracy in machine learning", en The Debates, at the 35th International Conference on Machine Learning.
Parnas, David Lorge (1985), "Software Aspects of Strategic Defense Systems", American Scientist, September-October 1985, 432-440.
Pettigrew, Richard (2020), Choosing for Changing Selves, Oxford University Press. https://doi.org/10.1093/oso/9780198814962.001.0001
Robertson, Samantha y Salehi, Niloufar (2020), "What if I don't like any of the choices? The limits of preference elicitation for participatory algorithm design", en Participatory Approaches to Machine Learning Workshop, ICML 2020. https://arxiv.org/pdf/2007.06718.pdf
Rouvroy, Antoinette (2013), "The end(s) of critique: data-behaviourism vs. due process", en Hildebrandt, Mireille y de Vries, Katja (eds.), Privacy, Due Process and the Computational Turn. Philosophers of Law Meet Philosophers of Technology, New York: Routledge.
Russell, Stuart (2019), "The purpose put into the machine", Brockman, John (ed.), Possible Minds. 25 Ways of Looking at AI, New York: Penguin, 20-32.
Selbst, Andrew D.; Boyd, Danah; Friedler, Sorelle A.; Venkatasubramanian, Suresh y Vertesi, Janet (2019). "Fairness and abstraction in sociotechnical systems", en Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3287560.3287598
Thaler, Richard H. (2015), Misbehaving: The making of behavioral economics, New York: Norton & Co.
Waldman, Ari Ezra (2019), "Power, Process, and Automated Decision-Making", 88 Fordham Law Review 613. Available at: https://ir.lawnet.fordham.edu/flr/vol88/iss2/9
Wang, Annie J. (2018), "Procedural justice and risk-assessment algorithms". SSRN Electronic Journal 2018: 1-31. https://doi.org/10.2139/ssrn.3170136
Zarsky, Tal (2016), "The Trouble with Algorithmic Decisions An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making", Science, Technology & Human Values 41, 118-132. https://doi.org/10.1177/0162243915605575
Züger, Theresa; Milan, Stefania y Tanczer, Leonie Maria (2017), "Sand im Getriebe der Informationsgesellschaft: Wie digitale Technologien die Paradigmen des Zivilen Ungehorsams herausfordern und verändern", en Politische Theorie und Digitalisierung, Jacob, Daniel y Thiel, Thorsten (eds.), Baden-Baden: Nomos, 265-296. https://doi.org/10.5771/9783845280462-265
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.